NASA FIre Light Detection Algorithm (FILDA) Fire Modified Combustion Efficiency Products

Product User GuidePI - Jun Wang (UIOWA)
Co-Is: Lu Hu and Bob Yokelson (U. of Montana), Tara Yacovitch and
Scott Herndon (Aerodyne Research, Inc.), David Peterson (Naval Research Lab)
Collaborators: Zhuosen Wang (UMD/NASA GSFC), Meng Zhou (U. Iowa)


The FILDA 375m/750m fire modified combustion efficiency product integrates the day/night band (DNB), medium-wavelength infrared (MWIR), and long wavelength infrared (LWIR) channels to simultaneously improve the fire detection and retrievals of fire radiative power (FRP), fire visible energy fraction (VEF), and fire modified combustion efficiency (MCE) at nighttime from the holistic use of those multiple-spectral radiances measured by the VIIRS Suomi-NPP (VNP) and NOAA-20/JPSS-1 (VJ1) satellites.

The FILDA algorithm generates the Level 2 active fire data products at 375m (Imagery resolution bands) and 750m (Moderate resolution bands). Each data product includes the following key parameters describing the characteristics of a fire pixel: (a) its location in terms of latitude and longitude; (b) FRP; (c) VEF, (d) MCE.

Atmospheric gas absorption plays a significant role in attenuating fire radiance. Deng et al. (2024) demonstrated that neglecting this effect can result in up to a 60% underestimation of fire radiative power (FRP). In the current FILDA-2 product, FRP is derived from 4 µm radiance using Wooster’s empirical regression approach, without applying atmospheric correction. Therefore, it is recommended to perform offline atmospheric correction on FRP for improved accuracy. The Python package to conduct atmospheric correction for VIIRS FILDA FRP retrieval can be found atĀ https://github.com/uiowa-aer-lab/frp-atmospheric-correction/tree/main. The required look-up tables can be downloaded fromĀ https://arroma.uiowa.edu/filda_luts.php.



FILDA



Product Details and links to LPDAAC

Product Name SNPP JPSS-1
FILDA-2 Fire Modified Combustion Efficiency Product 6-min L2 Swath 750m VNP47MOD VJ147MOD
FILDA-2 Fire Modified Combustion Efficiency Product 6-min L2 Swath 375m VNP47IMG VJ147IMG

 


References

The algorithm theoretical basis and description for FILDA can be found in the reference papers below.

Deng, W., M. Zhou, J. Wang, Z. Xue, Z. Lu, X. Chen, H. Zhang, D. A. Peterson, E. J. Hyer, and A. M. da Silva (2024), Advancing FRP     Retrieval: Bridging Theory and Application, IEEE Transactions on Geoscience and Remote Sensing, 62, 1-16,     doi:10.1109/TGRS.2024.3470538.

Zhou, M., J. Wang, L. Castro Garcia, X. Chen, A. da Silva, Z. Wang, M. O. Roman, E. Hyer, and S. D. Miller, Enhancement of     Nighttime Fire Detection and Combustion Efficiency Characterization using Suomi-NPP and NOAA20 VIIRS Instruments, IEEE     Transactions on Geoscience and Remote Sensing, vol. 61, 4402420, 2023.

Wang, J., M. Zhou, X. Xu, S. Roudini, S. Sander, T. Pongetti, S. Miller, J. Reid, E. Hyer, R. Spurr, Development of a nighttime     shortwave radiative transfer model for remote sensing of nocturnal aerosols and fires from VIIRS, Remote Sensing of Environment,     241, 111727, 2020.

Wang, J., S. Roudini, E. J. Hyer, X. Xu, M. Zhou, L. Castro Garcia, J. S. Reid, D. Peterson, A. Da Silva, Detecting nighttime fire     combustion phase by hybrid application of visible and infrared radiation from Suomi NPP VIIRS, Remote Sensing of Environment,     237, 111466, 2020.

Polivka, T., J. Wang, L. Ellison, E. Hyer, and C. Ichoku, Improving Nocturnal Fire Detection with the VIIRS Day-Night Band, IEEE     Transactions on Geoscience & Remote Sensing, 9, 5503-5519, 2016.

Polivka, T., E. Hyer, J. Wang , and D. Peterson, First global analysis of saturation artifacts in the VIIRS infrared channels and the     effects of sample aggregation, IEEE Geoscience and Remote Sensing Letters, 1262-1266, 2015.

References are available at https://esmc.uiowa.edu/filda/filda_reference.php